Powered by Blogger.

Saturday 11 May 2013

Atomic Mass

This page describes about chemical structure and formulas in studying the mass relationships of atoms and molecules. These relationships in turn will help us to explain the composition of compounds and the ways in which
composition changes.

The mass of an atom depends on the number of electrons, protons, and neutrons it contains. Knowledge of an atom’s mass is important in laboratory work. But atoms are extremely small particles—even the smallest speck of dust that our unaided eyes can detect contains as many as 1 1016 atoms! Clearly we cannot weigh a single atom, but it is possible to determine the mass of one atom relative to another experimentally. The first step is to assign a value to the mass of one atom of a given element so that it can be used as a standard.

By international agreement, atomic mass (sometimes called atomic weight) is the mass of the atom in atomic mass units (amu). One atomic mass unit is defined as a mass exactly equal to one-twelfth the mass of one carbon-12 atom. Carbon-12 is the carbon isotope that has six protons and six neutrons. Setting the atomic mass of carbon- 12 at 12 amu provides the standard for measuring the atomic mass of the other elements. For example, experiments have shown that, on average, a hydrogen atom is only 8.400 percent as massive as the carbon-12 atom. Thus, if the mass of one carbon-12 atom is exactly 12 amu, the atomic mass of hydrogen must be 0.0084 12.00 amu or 1.008 amu. Similar calculations show that the atomic mass of oxygen is 16.00 amu and that of iron is 55.85 amu. Thus, although we do not know just how much an  verage iron atom’s mass is, we know that it is approximately fifty-six times as massive as a hydrogen atom.

Average Atomic Mass

When you look up the atomic mass of carbon in a table such as the one on the inside front cover of this book, you will find that its value is not 12.00 amu but 12.01 amu. The reason for the difference is that most naturally occurring elements (including carbon) have more than one isotope. This means that when we measure the atomic mass of an element, we must generally settle for the average mass of the naturally occurring mixture of isotopes. For example, the natural abundances of carbon-12 and carbon- 13 are 98.90 percent and 1.10 percent, respectively. The atomic mass of carbon- 13 has been determined to be 13.00335 amu. Thus the average atomic mass of carbon can be calculated as follows:
average atomic mass of natural carbon = (0.9890)(12.00000 amu) + (0.0110)(13.00335 amu)
= 12.0 amu
A more accurate determination gives the atomic mass of carbon as 12.01 amu. Note that in calculations involving percentages, we need to convert percentages to fractions. For example, 98.90 percent becomes 98.90/100, or 0.9890. Because there are many more carbon-12 atoms than carbon-13 atoms in naturally occurring carbon, the average atomic mass is much closer to 12 amu than to 13 amu. It is important to understand that when we say that the atomic mass of carbon is 12.01 amu, we are referring to the average value. If carbon atoms could be examined individually, we would find either an atom of atomic mass 12.00000 amu or one of 3.00335 amu, but never one of 12.01 amu. The following example shows how to calculate the average atomic mass of an element.

Ditulis Oleh : Unknown // 23:32
Kategori: